If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2q^2+3q-1=0
a = 2; b = 3; c = -1;
Δ = b2-4ac
Δ = 32-4·2·(-1)
Δ = 17
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-\sqrt{17}}{2*2}=\frac{-3-\sqrt{17}}{4} $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+\sqrt{17}}{2*2}=\frac{-3+\sqrt{17}}{4} $
| -3x+8=-6x+17 | | 7x−2x7=100 | | X-1+7x=95 | | c-4+ -18= -20 | | 1/2k−8+1/4k=10 | | 12k−8+14k=10 | | 2y+7=23Y= | | x+11/2-2x+13/5=5 | | G^2+17+c=0 | | 25x^2-100x+81=0 | | 8*2^n+2=32 | | 25x^2-100x+36=0 | | Y^6=4x+9 | | 5c1.08+c+-20=0 | | c2+c+-20=0 | | 2=3q−4 | | 25x^2-100x+49=0 | | 18 = j3+ 15 | | 7/5=210/x7x=1,050x=150 | | 7t-1t-3=5t-5 | | 3r−2=10 | | 19-5=19x+5x | | 191=h-255 | | 25x^2-100x+64=0 | | 14n=378 | | -28m=504 | | t+183=527 | | 906=u+75 | | 729=27h | | 5x-10÷7=-5 | | 2x+2x+24=90 | | X/6+10=1/4-2x |